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Effective Field Theories

Aneesh V. Manohar

Physics Department, University of California, San Diego,
9500 Gilman Drive, La Jolla, CA 92093, USA

Abstract. These lectures introduce some of the basic ideas of effective field theories.
The topics discussed include: relevant and irrelevant operators and scaling, renormal-
ization in effective field theories, decoupling of heavy particles, power counting, and
naive dimensional analysis. Effective Lagrangians are used to study the ∆S = 2 weak
interactions and chiral perturbation theory.

1 Introduction

An important idea that is implicit in all descriptions of physical phenomena
is that of an effective theory. The basic premise of effective theories is that
dynamics at low energies (or large distances) does not depend on the details
of the dynamics at high energies (or short distances). As a result, low energy
physics can be described using an effective Lagrangian that contains only a few
degrees of freedom, ignoring additional degrees of freedom present at higher
energies. One of the main purposes of these lectures is to make these qualitative
statements quantitative.

First a simple example: The energy levels of the Hydrogen atom are calcu-
lated in textbooks using the Schrödinger equation for an electron bound to a
proton by a Coulomb potential. To a good approximation, the only properties
of the proton that are relevant for the computation are its mass and charge.
An understanding of the quark substructure of the proton (let alone quantum
gravity) is not necessary to compute the energy levels of the Hydrogen states.
This is true provided an answer which has some theoretical uncertainty is suf-
ficient. A more accurate calculation of the energy levels, for example including
the hyperfine splitting, requires that we also know that the proton has spin-1/2,
and a magnetic moment of 2.793 nuclear magnetons. An even more accurate
calculation of the energy levels requires some knowledge of the proton charge
radius, etc. More details of the proton structure are needed as we require a more
accurate answer for the energy levels.

When we discuss effective theories, we will frequently talk about momentum
scales characteristic of a given problem. The typical length scale characteristic
of the Hydrogen atom is the Bohr radius a0 = 1/(meα), and the typical mo-
mentum scale is of order h̄/a0 ∼ 1/a0 = meα, using units in which h̄ = 1. The
typical energy scale characteristic of Hydrogen is the Rydberg ∼ meα

2, and the
typical time scale is 1/(meα

2). The Hydrogen atom is more complicated than
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many relativistic bound states because it has two characteristic scales, meα and
meα

2. We can now give a quantitative estimate of the error caused by neglected
interactions: the energy levels of Hydrogen can be computed by ignoring all dy-
namics on momentum scales Λ much larger than meα, with an error of order
meα/Λ. As the desired accuracy increases, the scale Λ of the interactions that
can be ignored, also increases.

The relevant interactions in an effective theory also depend on the question
being studied. In the Hydrogen atom, the energy levels can be computed to
an accuracy (meα/MW )2 while ignoring the weak interactions, but if we are
interested in atomic parity violation, the weak interactions are the leading con-
tribution since strong and electromagnetic interactions conserve parity. Atomic
parity violation will still be a very small effect, because the weak scale is much
larger than the atomic scale.

An effective field theory describes low energy physics in terms of a few pa-
rameters. These low energy parameters can be computed in terms of (hopefully
fewer) parameters in a more fundamental high energy theory. This computation
can be done explicitly when the high energy theory is weakly coupled. In QED,
for example, one can predict low energy parameters such as the magnetic mo-
ment of the electron which can be used in the Schrödinger equation. If the high
energy theory is strong coupled, as in QCD, one usually treats the low energy
parameters (such as the magnetic moment of the proton) as free parameters that
are fit to experiment. We will deal with both cases in these lectures when we
study the Fermi theory of weak interactions, and chiral perturbation theory.

We have said that high energy dynamics can be ignored in the study of
processes at low energies. The precise form of this statement is subtle. It is not
true that parameters in the high energy theory do not affect the low energy
dynamics in any way. The precise statement is that the only effect of the high
energy theory is to modify coupling constants in the low energy theory, or to put
symmetry constraints on the low energy theory. The energy levels of Hydrogen
should not depend on the masses of heavy particles such as the top quark. This
is not true: changing the top quark mass while keeping the electromagnetic
coupling constant at high energies fixed, changes the electromagnetic coupling
constant at low energies,

mt
d

dmt

(
1

α

)
= − 1

3π
. (1)

The proton mass also depends on the top quark mass,

mp ∝ m2/27
t . (2)

Despite this dependence, the value of mt is irrelevant for studying the Hydrogen
atom. The reason is that α and mp are parameters of the Schrödinger equation
for the Hydrogen atom. Fitting to the observed energy levels determines the value
of α at low energies to be 1/137.036, and the proton mass to be 938.27 MeV.
The value of mt is irrelevant for atomic physics if the Schrödinger equation is
treated as a low energy theory whose parameters α,me,mp are determined from
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low energy experiments. The value of mt is relevant if one studies how atomic
physics changes as a function of mt while keeping the high energy parameters
constant.

High energy dynamics places non-trivial symmetry constraints on a low en-
ergy effective theory. An interesting example of such a constraint is the spin-
statistics theorem. Non-relativistic quantum mechanics is a perfectly satisfac-
tory theory, regardless of whether electrons are quantized using Bose, Fermi
or Boltzmann statistics. However, a consistent relativistic formulation of the
theory requires that electrons obey Fermi statistics, which is a constraint on
non-relativistic quantum mechanics that follows from causality in quantum elec-
trodynamics. The spin-statistics theorem is a statement about symmetry, and
holds regardless of whether there is a simple connection between the high energy
and low energy theories. In low energy QCD, the spin-statistics theorem implies
that baryons are fermions and mesons are bosons.

The effective field theory technique is powerful precisely because one can
compute low energy dynamics without any knowledge of the details of high en-
ergy interactions. This also has an unfortunate consequence – information about
high energy interactions cannot be obtained using low energy measurements.
Luckily, the last statement is not quite true. There are some vestiges of the high
energy interactions in the symmetry constraints on the low energy theory, and in
small corrections to low energy dynamics. Thus high precision low energy exper-
iments can be used to probe high energy dynamics, and provide an alternative
to high energy experiments.

2 The Renormalization Group and Scaling

Effective actions were used by Wilson, Fisher, and Kadanoff to study critical
phenomena in condensed matter systems, and many of the ideas of effective
theories were developed in this context. Consider the classic example of an Ising
spin system on a square lattice with lattice spacing a, in an external magnetic
field. The partition function is

Z =
∑

si=±
exp


K

∑

〈ij〉
sisj +B

∑

i

si


 , (3)

where 〈ij〉 is a sum over nearest neighbors. At a second order phase transition,
the correlation length ξ of the system becomes infinite. Intuitively, one expects
that the properties of the Ising system near its critical point should not depend
on the details of the system on the scale of the lattice spacing a. It took a decade
of inspired work to convert this intuitive statement into equations.

To study the Ising model at its critical point, it is not necessary to retain
all the information in the partition function (3). The idea of Kadanoff was to
reduce the degrees of freedom by introducing a block spin. Divide the lattice of
spins into blocks of four spins each (see Fig. 1). The block spin s′ is defined for
each block to be the average of the spins at the four corners of the block
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s′B =
sB1 + sB2 + sB3 + sB4

4
, (4)

where s′B is the block spin for the block B, and sBi are the original spins at the
four corners of block B . One can write the partition function Z as

Z =
∑

si=±
exp


K

∑

〈ij〉
sisj + B

∑

i

si


 ,

=

∫ ∑

si=±

∏

B

ds′Bδ

(
s′B −

sB1 + sB2 + sB3 + sB4

4

)

× exp


K

∑

〈ij〉
sisj + B

∑

i

si


 ,

(5)

where the product is over all blocks B. Performing the sum over si leads to

Z =

∫ ∏

B

ds′B eS[s′B], (6)

where

eS[s′B] =
∑

si=±

∏

B

δ

(
s′B −

sB1 + sB2 + sB3 + sB4

4

)
exp


K

∑

〈ij〉
sisj +B

∑

i

si


 .

(7)
This is an exact renormalization group transformation (called a Kadanoff block
spin transformation), that expresses the partition function in terms of a new
action S [s′B ] with a quarter the number of degrees of freedom and twice the
lattice spacing as the original action.

The new variable s′B is the average of four spins with values ±1 (4), and can
have the values ±1, ±1/2, 0. The new action S [s′B ] is much more complicated
than the original action K

∑
〈ij〉 sisj+B

∑
i si, but can in principle be computed

using (7). Now repeat the block spin transformation an infinite number of times.
At each step, the number of degrees of freedom is reduced by four. The block
spin s eventually becomes a continuous variable, which is usually denoted by φ.
The only problem is that the action becomes more and more complicated, and
more and more non-local at each step. This was the difficulty that prevented the
Kadanoff block spin method from being used for a long time. What is needed is
a way to truncate the effective action in a systematic and controlled manner. It
is also important (particularly in field theory) to have an effective action that is
local.

A technical difficulty with the block spin transformation is that it is discrete;
it is much easier to deal with continuous transformations. Wilson suggested
studying the Ising model in momentum space. The variables in momentum space
are Fourier transformed variables s(k), where the momentum k is restricted to
the Brillouin zone, |k| ≤ kmax = π/a. The Kadanoff block spin transformation
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/

s s

s s

B1 B2

B4 B3

s
B

Fig. 1. The Kadanoff block spin transformation. The four spins at the corner of each
block are replaced by an average spin at the center

takes a→ 2a→ 4a, etc., which corresponds to letting kmax → kmax/2→ kmax/4,
etc. k is a continuous variable, so instead consider decreasing kmax continuously.
The partition function transformation formula becomes (using φ,Λ instead of
s, kmax)

Z =

∫

k≤Λ
Dφk e−SΛ [φk ] =

∫

k≤Λ′
Dφ′k e−S

′
Λ′ [φ

′
k], (8)

which is the momentum space analog of (7). The original action SΛ [φk] contains
all momentum modes up to some maximum value Λ, whereas the new action
S′Λ′ [φ

′
k] contains momentum modes up to Λ′, where Λ′ < Λ. The idea is to take

Λ′ = Λ−δΛ infinitesimally different from Λ, so that S′ is infinitesimally different
from S. In the limit δΛ→ 0, the effective action satisfies a differential equation,

∂SΛ
∂Λ

= F [SΛ] , (9)

where F is a functional of the action that can be determined from (8). Think
of SΛ as a set of actions, so that (9) gives the change in action as a function of
cutoff. This is usually referred to as the renormalization group flow of the action.
The action can be written as ∑

i

ci Oi, (10)

in terms of coefficients ci and some operator basis Oi. The differential equation
(9) is then a differential equation for the couplings,

∂ci
∂Λ

= F [{ci}] , (11)



6 Aneesh V. Manohar

so that the renormalization group equation gives a flow in coupling constant
space.

Finally, an extremely important point: the renormalization group equations
are obtained by integrating out variables with momenta between Λ− δΛ and Λ.
There is both an infrared (Λ− δΛ) and ultraviolet (Λ) cutoff on the integration,
so the renormalization group equations are local and non-singular.

Free Field Theory

To explicitly study the renormalization group equations, it is helpful to consider
first a free scalar field in D dimensions, with action

S =

∫
dDx

1

2
∂µφ∂

µφ− 1

2
m2φ2. (12)

The action S is dimensionless, so the dimension of φ(x) is determined from the
kinetic term to be [φ] = (D − 2) /2, and the dimension of m2 is

[
m2
]

= 2.
We would like to study correlation functions

Gn (x1, . . . , xn) = 〈φ (x1) . . . φ (xn)〉S , (13)

computed using the action S at long distances (i.e. low momentum). It is con-
venient to make the change of variables,

x = sx′, φ(x) = s(2−D)/2φ′(x′), (14)

so that

S′ =

∫
dDx′

1

2
∂′µφ

′(x′)∂
′µφ′(x′) − 1

2
m2s2φ′(x′)2. (15)

Correlation functions of φ(x) with action S are related to correlation func-
tions of φ′(x′) with action S′ by

〈φ(sx1) . . .φ(sxn)〉S = sn(2−D)/2 〈φ′(x1) . . .φ′(xn)〉S′ . (16)

The long distance (low momentum) limit of correlation functions with action S
is obtained by letting s → ∞. These can be obtained by studying correlation
functions at a fixed distance (fixed momentum) of the action S′ as s→∞. The
mass term in S′ is s2m2. Clearly, in the limit s → ∞, the mass term becomes
more and more important. The mass m2 is called a relevant coupling, and dom-
inates the long distance behavior of the correlation functions. Equivalently, φ2

is called a relevant operator.
What about integrating out momentum shells to lower the cutoff? The orig-

inal action had an implicit cutoff Λ. We should have integrated out momentum
modes and lowered the cutoff to Λ/s, so that the rescaling transformation (14)
restored the cutoff to its original value Λ. In free field theory, there is no coupling
between the different modes. Thus integrating out a momentum shell produces
an overall multiplicative factor in Z, i.e. an additive constant to the effective
action. This shifts the cosmological constant, but does not affect the dynamics
of φ.
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Interactions

Next, add the interaction terms λφ4/4! + λ6φ
6/6! to the free Lagrangian. The

dimensions of the coefficients are [λ] = 0, [λ6] = −2. Rescaling the field as before
(and ignoring, for the moment, integrating out momenta between Λ and Λ/s)
gives the rescaled action

S′ =

∫
dDx′

1

2
∂′µφ

′∂
′µφ′ − 1

2
m2s2φ′2 − λ

4!
φ′4 − λ6

6!s2
φ′6, (17)

with the implicit rescaled cutoff Λ. In the limit s→∞, the φ6 term vanishes as
1/s2, so φ6 is called a irrelevant operator, and λ6 is called an irrelevant coupling.
The φ4 term remains unchanged under rescaling, so it is equally important at
all length scales. For this reason, φ4 is known as a marginal operator, and λ4 is
called a marginal coupling.

In effective field theories, we are usually interested in studying the dynamics
at low energies, but not exactly at zero energy. For example, we will be studying
hadron dynamics at a scale of order 1 GeV, which is much smaller than the
weak interaction scale of MW ∼ 80 GeV. In this case, the scale factor s between
the weak and strong scales is s = 80, which is large but finite. Irrelevant op-
erators (despite their name) then produce small corrections. In our scalar field
theory example, the φ6 operator produces corrections of order 1/s2, φ8 produces
corrections of order 1/s4, etc.

The alert reader will have noticed that the above results follow from di-
mensional analysis. The counting can trivially be generalized to an arbitrary
Lagrangian:

1. Determine the canonical dimensions of the fields using the kinetic term.
2. Determine the (mass) dimensions of all the couplings.
3. Terms with a coupling constant with dimension d scale as sd, so that the

coupling is relevant, irrelevant or marginal depending on whether d > 0,
d < 0 or d = 0. Equivalently, the operator is relevant, irrelevant, or marginal
depending on whether its dimension is less than, greater than, or equal to
the space-time dimension D.

4. To include all corrections up to order 1/sr, one should include all operators
with dimension ≤ D + r, i.e. all terms with coefficients of dimension ≥ −r.

Let us now turn on the interactions. The first problem is that there are diver-
gences in the quantum theory. These are handled by the standard regularization
and renormalization procedure. In scalar field theory, for example, one can in-
troduce a cutoff Λ to regulate the functional integral. In the presence of a cutoff,
the relation (16) between correlation functions becomes

Gn
(
{sx} ;m2, λ4, λ6;Λ

)
= sn(2−D)/2Gn

(
{x} ; s2m2, λ4, s

−2λ6; sΛ
)
, (18)

where we have explicitly included the cutoff dependence, and {x} denotes
x1, . . . , xn. The left hand side is the desired correlation function. To get the
infrared behavior of the left hand side, we need to replace the cutoff sΛ by Λ on
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the right hand side. This is the hard part of the calculation which we have ignored
so far, but one that you have all seen before – it is the standard renormalization
group equation of quantum field theory:

[
Λ
∂

∂Λ
+ βi

∂

∂ci
+ nγφ

]
G = 0. (19)

Here ci are the couplings, m2, λ, λ6, etc., and the β-functions βi and anomalous
dimension γφ are functions of ci. The solution of this equation is also standard.
Define running couplings which are solutions of the differential equation

Λ
∂

∂Λ
ci (Λ) = βi (ci (Λ)) . (20)

Then

Gn ({x} , ci (Λ1) , Λ1) = e
−n
∫ Λ2

Λ1
γ(Λ)d logΛ

Gn ({x} , ci (Λ2) , Λ2) . (21)

Equation (18) can be combined with (21) to give

G ({sx} , ci (Λ) , Λ) = sn(2−D)/2e
−n
∫
Λ/s

Λ
γ(Λ′)d logΛ′

G
(
{x} , sdici (Λ/s) , Λ

)

(22)
where di is the dimension of coupling ci. The only difference from (16) is the
exponential prefactor, and that ci is now the running coupling at Λ/s.

It is instructive to look at some examples of renormalization group equations
before continuing with our general analysis. In QCD, the renormalization group
equation for the dimensionless coupling constant g is

µ
∂g

∂µ
= − g3

16π2
b0 + O

(
g5
)
, (23)

where b0 = 11Nc/3− 2Nf/3, Nc is the number of colors, and Nf is the number
of flavors. Equation (23) is the β-function in any mass independent scheme, such
as MS, and µ is the dimensionful parameter that plays the role of Λ in such a
scheme. The anomalous dimension for a field (such as the fermion field ψ) has
the form

γψ = γ0
ψ

g2

16π2
+ O

(
g4
)
. (24)

Other operators added to the Lagrangian, such as four-Fermi weak decay oper-
ators have renormalization group equations of the form

µ
∂ci
∂µ

= γ0
ij

g2

16π2
cj +O

(
g4
)
. (25)

Let us neglect operator mixing for simplicity, so that γij is a diagonal matrix,
with elements γiδij. The solutions of the renormalization group equations are1

1 The general case where γij is not diagonal can be solved by finding the eigenvalues

and eigenvectors of γij.
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1

αs (µ1)
− 1

αs (µ2)
=

b0
2π

log
µ1

µ2
,

ci (µ1)

ci (µ2)
=

[
αs (µ1)

αs (µ1)

]−γ0
i /2b0

,

exp

[
−
∫ µ1

µ2

γψ (µ) d logµ

]
=

[
αs (µ1)

αs (µ2)

]γ0
ψ/2b0

.

(26)

These equations show that the quantum scaling behavior differs from the classical
one by logarithms. A more interesting case is a field theory in which the β-
function for a dimensionless coupling such as g has the form shown in Fig. 2.
The renormalization group equation for g, (23), shows that g → g∗ as µ → 0
if g starts out in some neighborhood of g∗. For this reason g∗ is known as an
attractive (or stable) infrared fixed point for g. In this case, the renormalization
group scaling in the limit s→∞ is dominated by g ≈ g∗, so that

µ
∂ci
∂µ

= γij (g∗) cj ,

γφ (µ)→ γφ (g∗) .
(27)

Denote the fixed point values γij (g∗) and γ (g∗) by γ∗ij and γ∗, and assume for
simplicity that γ∗ij = γ∗i δij . (As above, the general case is solved by finding the
eigenvalues an eigenvectors of γ∗ij .) The solutions of the renormalization group
equations in the neighborhood of the fixed point become

ci (µ1)

ci (µ2)
=

[
µ1

µ2

]γ∗i
,

exp

[
−
∫ µ1

µ2

γφ (µ) d logµ

]
=

[
µ1

µ2

]−γ∗
.

(28)

so that (22) becomes

Gn ({sx} , ci (Λ) , Λ) = sn(2−D)/2snγ
∗
Gn

(
{x} , sdi−γ∗i ci (Λ/s) , Λ

)
(29)

This equation shows that scale invariance is recovered in the quantum theory at
an infrared stable fixed point, but the quantum dimensions of fields and operators
differ from their classical values. Operators now have dimension D−di+γ∗i , their
coefficients have dimension di − γ∗i , and fields have dimension (D − 2) /2− γ∗.
This is the reason why γ, γij are called anomalous dimensions. The classification
into relevant, irrelevant and marginal operators is the same as before, except
that one should use the quantum dimension of the operator which includes the
anomalous dimension.

In weakly coupled theories, operator anomalous dimensions can be computed
in perturbation theory, and are small. Thus quantum corrections cannot affect
which operators are relevant or irrelevant, since the classical dimensions of op-
erators are restricted to be integers or half-integers. The only effect of quantum
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β(g)

g*
g

Fig. 2. An infrared stable fixed point of the β function

corrections is to turn marginal operators into relevant or irrelevant operators,
depending on whether their anomalous dimension is negative or positive. In
strongly coupled theories, more interesting effects can occur. For example, in
walking technicolor theories it is believed that a composite operator ψψ with
classical dimension 3 behaves in the quantum theory as a scalar field with di-
mension 1, i.e. ψψ has anomalous dimension −2. A solvable example of this kind
exists in two dimensions. The two dimensional Thirring model with a fundamen-
tal fermion field

L = ψ
(
i/∂ −m

)
ψ − 1

2
g
(
ψγµψ

)2
, (30)

is dual to the sine-Gordon model with a fundamental scalar field

L =
1

2
∂µφ∂

µφ+
α

β2
cos βφ, (31)

where the coupling constants g and β are related by

β2

4π
=

1

1 + g/π
. (32)

The fermion of the Thirring model is the sine-Gordon soliton, and the boson
of the sine-Gordon model is a fermion-antifermion bound state in the Thirring
model. The mapping (32) shows that the strongly coupled sine-Gordon model
with β2 ≈ 4π can be mapped onto a weakly coupled Thirring model with g ≈ 0.
There are two alternate descriptions of the same theory: (a) A strongly inter-
acting boson theory with large anomalous dimensions2 (b) A weakly interacting

2 For example, the operator cos βφ gets mapped to the Fermion mass term ψψ. In two

dimensions, the canonical dimensions of cos βφ and ψψ are zero and one, respectively.
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fermion theory with small anomalous dimensions. Formally, both descriptions
are identical, but clearly (b) is better for doing practical calculations.

The scaling dimensions of fields was determined from the free Lagrangian.
That is because one assumes that the effective Lagrangian can be written as a
weakly coupled field theory in terms of correctly chosen degrees of freedom at low
energies. If the degrees of freedom are strongly coupled, the scaling dimension of
the fields may change from their canonical value, as we saw in the sine-Gordon
model at β2 = 4π. Often, the most difficult task in writing down an effective
theory is choosing the right degrees of freedom. In the sine-Gordon model, it is
better to use a weakly coupled soliton field ψ instead of the fundamental field φ
if β2 ≈ 4π, i.e. the effective Lagrangian for the sine-Gordon model with β2 ≈ 4π
is the Thirring model. Low energy QCD is a weakly coupled theory when written
in terms of pion fields, but not when written in terms of quark and gluon fields.1

At low energies, the Goldstone boson fields scale with canonical dimension zero
(they are like angles), which is different from qq, which has dimension 3 in free
field theory. There are many examples of this kind in condensed matter physics.
For example, in Landau Fermi liquid theory, the degrees of freedom are weakly
interacting quasiparticles, not the strongly interacting electrons.

SUMMARY

We can now summarize the results of this section.

1. Find a good set of variables to describe the dynamics.

2. Write down the effective action as a sum of operators,
∑

i ciOi.
3. The scaling rule is that ci → sdi−γici, where di is the naive dimension and
γi is the anomalous dimension. The most important operators are those of
lowest dimension. Hopefully, a good choice has been made in (1), so that
the anomalous dimensions are small.

4. To include all corrections up to order 1/sr, one should include all operators
with dimension ≤ D + r, i.e. all terms with coefficients of dimension ≥ −r.

There are a finite number of operators that contribute to a given order in 1/s.
In four dimensions, the dimensions of scalar, spinor and vector fields is

[φ] = 1, [ψ] = 3/2, [Aµ] = 1. (33)

The allowed Lorentz invariant and gauge invariant operators of dimension ≤ 4
are φn, n ≤ 4, ψψ, ∂µφ∂

µφ, ψ /Dψ, ψψφ, FµνF
µν.

1 This is obvious in the large Nc limit, where one has a weakly interacting

theory of mesons and baryons, with a coupling constant 1/Nc.
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3 Renormalizable Theories vs Effective Theories

Field theory textbooks argue that a quantum field theory should be renormaliz-
able, i.e. that the Lagrangian contain only terms with dimension ≤ D. Otherwise
one needs an infinite number of counterterms, hence an infinite number of un-
known parameters, and the theory has no predictive power.

An effective field theory Lagrangian contains an infinite number of terms.
Let us write the Lagrangian in the form

Left = L≤D + LD+1 + LD+2 + . . . , (34)

where L≤D contains all terms with dimension ≤ D, LD+1 contains terms with
dimension D + 1, LD+2 contains terms with dimension D + 2, and so on. The
usual renormalizable Lagrangian is just the first term, L≤D. There are an infi-
nite number of terms in Left, but one still has approximate predictive power. The
effective Lagrangian is used to compute processes at some scale Λ/s, where Λ is
the scale of (possibly unknown) high energy interactions. One can compute with
an error of 1/s by retaining only L≤D. Furthermore, one can extend the approx-
imation in a systematic way – to compute with an error of order 1/sr+1, one
needs to retain terms up to LD+r. There are only a finite number of parameters
to compute to a given order in 1/s, so the theory has predictive power.

A non-renormalizable theory is just as good as a renormalizable
theory for computations, provided one is satisfied with a finite accu-
racy.

The usual renormalizable field theory result is recovered if one takes the
separation of scales s→∞. In this case, one can compute using a renormalizable
Lagrangian L≤D with no errors. While exact computations are nice, they are
irrelevant. Nobody knows the exact theory up to infinitely high energies. Thus
any realistic calculation is done using an effective field theory. The standard
“exact” textbook analysis of QED is really an approximate calculation in which
terms suppressed by powers of 1/s have been neglected.

4 Two Simple Examples

We now consider two simple examples that illustrates the utility of the effective
field theory method.

Rayleigh Scattering

The first example is Rayleigh scattering, the scattering of photons off atoms
at low energies. Here low energies means energies small enough that one does
not excite the internal states of the atom, or cause it to ionize. The atom can
be treated as a particle of mass M , interacting with the electromagnetic field.
Let ψ(x) denote a field operator that creates an atom at the point x. Then the
effective Lagrangian for the atom is
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L = ψ†
(
i∂t −

p2

2M

)
ψ + Lint, (35)

where Lint is the interaction term. Since the atom is neutral, the interaction
term is a function of the electromagnetic field strength Fµν = (E,B). Gauge
invariance forbids terms which depend only on the vector potential Aµ. At low
energies, the dominant interaction is one which involves the smallest number of
derivatives, and the smallest number of photon fields, and has the form

Lint = a3
0 ψ
†ψ
(
c1E

2 + c2B
2
)

(36)

The electromagnetic field strength has mass dimension two, ψ has mass dimen-
sion 3/2 (ψ†i∂tψ has dimension four), so that c1a

3
0 and c2a

3
0 have mass dimen-

sion −3. The typical momentum scale is set by the size of the atom a0, so one
expects c1,2 to be of order unity. The interaction (36) gives the scattering am-
plitude A ∼ cia

3
0ω

2, since the electric and magnetic fields are gradients of the
vector potential, so each factor of E or B produces a factor of ω. The scattering
cross-section is proportional to |ci|2 a6

0ω
4. This has the correct dimensions to be

a cross-section, so the phase-space is dimensionless, and one finds that

σ ∝ a6
0 ω

4. (37)

This reproduces the well-know ω4 dependence of the Rayleigh scattering cross-
section, which explains why the sky is blue. One can actually do better, and
determine the factors of 4π in (37), but I won’t discuss that here. Equation (37)
has corrections of order ω/a0 from higher dimension operators which have been
neglected in (36).

The Euler-Heisenberg Lagrangian

The Euler-Heisenberg effective Lagrangian is the effective Lagrangian for photon-
photon scattering at energies much lower than the electron mass me. The leading
order Lagrangian is the free Maxwell theory,

L = −1

4
FµνF

µν . (38)

The first interactions that can occur are from higher dimension operators. The
lowest non-trivial operators must contain four factors of the field strength Fµν
and hence must be of dimension eight,

L =
α2

m4
e

[
c1 (FµνF

µν)
2

+ c2

(
FµνF̃

µν
)2
]
. (39)

(Terms with only three field strengths are forbidden by charge conjugation sym-
metry.) The effective interaction (39) is generated from the box diagram of Fig. 3.
The box diagram contains four factors of the electric charge e, and one factor
of 1/16π2 for the loop. In addition, the only dimensionful parameter other than
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the external momenta is the electron mass me. This allows us to write the La-
grangian in the form (39), where c1,2 are dimensionless constants. An explicit
computation gives

c1 =
1

90
, c2 =

7

90
. (40)

The low energy cross-section for γγ → γγ is obtained from the graph in the
effective theory, Fig. 3(b). The scattering amplitude is A ∼ α2ω4/m4

e, since each
gradient of the photon field in (39) produces one factor of ω. This produces a
cross-section of order

σ ∼
(
α2ω4

m4
e

)2
1

ω2
. (41)

The phase space factor 1/ω2 is obtained using dimensional analysis. The cross-
section must have dimensions of area, so the phase space must have dimension
−2. The only dimensionful parameter in the effective theory is the photon energy
ω, so the phase space must be proportional to 1/ω2. Thus we find σ ∼ α4ω6/m8

e,
with an error of order ω2/m2

e from neglected higher order interactions in (39).

(a) (b)

Fig. 3. Light by light scattering in (a) QED and (b) in the Euler-Heisenberg effec-
tive theory. The solid dot represents the four-photon interaction from the effective
Lagrangian (39)

5 Weak Interactions at Low Energies: Tree Level

The classic example of an effective field theory is the Fermi theory of weak
interactions. We first discuss how to obtain the Fermi theory as the low-energy
limit of the renormalizable SU (2) × U (1) electroweak theory at tree level. The
use of effective field theories for the tree level weak interactions will seem at first
like applying a lot of unnecessary formalism to a trivial problem; the usefulness
of the effective field theory method will only become apparent after we study
the ∆S = 2 weak interactions, which involve loop corrections in field theory.
Finally, we will discuss the weak interactions including the leading logarithmic
QCD corrections, for which the effective field theory method is indispensable.
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The basic flavor changing vertex in the quark sector is the W coupling to the
quark current

− ig√
2
Vij qi γ

µ PL qj, (42)

where Vij is the Kobayashi-Maskawa mixing matrix, and PL = (1− γ5)/2 is the
left-handed projection operator. The lowest order ∆S = 1 amplitude arises from
single W exchange (Fig. 4),

A =

(
ig√

2

)2

VusV
∗
ud (u γµ PL s)

(
d γν PL u

)( −igµν
p2 −M2

W

)
, (43)

where the W boson propagator is in ’t Hooft-Feynman gauge, p is the momentum
transferred by the W , and u, d, s are quark spinors. The exchange of unphysical
scalars φ± can be neglected, since their Yukawa couplings to the light quarks
are very small. The amplitude (43) produces a non-local four-quark interaction,
because of the factor of p2 −M2

W in the denominator. However, if the momen-
tum transfer p is small compared with MW , the non-local interaction can be
approximated by a local interaction using the Taylor series expansion

1

p2 −M2
W

= − 1

M2
W

(
1 +

p2

M2
W

+
p4

M4
W

+ . . .

)
, (44)

and retaining only a finite number of terms. To lowest order, the amplitude is

A =
i

M2
W

(
ig√

2

)2

VusV
∗
ud (u γµ PL s)

(
dγµ PL u

)
+O

(
1

M4
W

)
. (45)

The amplitude (45) can be obtained using the effective Lagrangian

L = −4GF√
2
VusV

∗
ud (u γµ PL s)

(
dγµ PL u

)
+ O

(
1

M4
W

)
, (46)

where u, d and s are now the quark fields, and we have used the definition

GF√
2
≡ g2

8M2
W

. (47)

The effective Lagrangian (46) can be used to study the weak decays of quarks
at low energies. The basic interaction is a local four-Fermion vertex, as shown in
Fig. 5. To avoid complications with hadronic matrix elements and QCD correc-
tions (which will be discussed later), consider instead the effective Lagrangian
for µ decay

L = −4GF√
2

(e γµ PL νe) (νµ γ
µ PL µ) + O

(
1

M4
W

)
, (48)

whose derivation is almost identical to that of (46). Using (48), neglecting the
1/M4

W terms, and integrating over phase space gives the standard result for the
muon lifetime at lowest order,
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Γµ =
G2
Fm

5
µ

192π3
. (49)

This calculation is well known, and will not be repeated here.

To summarize: at lowest order, the “full theory,” which is the SU (2) × U (1)
electroweak theory, can be replaced by the “effective theory,” which is QED plus
the effective Lagrangian (46) (or (48)), up to corrections of order 1/M 4

W . The
effective theory can be used to compute physical processes such as the muon
lifetime. So far, the effective field theory method is a fancy way of saying that
we have approximated the W boson propagator in Fig. 4 by 1/M 2

W . The real
advantage of the effective field theory method will be apparent after we have
discussed the one-loop ∆S = 2 amplitude including QCD radiative corrections.

u

u

d

s

W

Fig. 4. W exchange diagram for the ∆S = 1 weak interactions

u

u d

s

Fig. 5. The effective four-Fermi interaction of (46). This interaction reproduces the
results of Fig. 4 to order 1/M2

W

6 Renormalization in Effective Field Theories

In quantum field theory, knowing the Lagrangian is not sufficient to compute re-
sults for physical quantities. In addition, one needs to specify a way to get finite,
unambiguous answers for physical quantities. In perturbation theory, this cor-
responds to a choice of renormalization scheme which (i) regulates the integrals
and (ii) subtracts the infinities in a systematic way. The effective Lagrangian
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(46) that we have constructed is non-renormalizable, since it contains an op-
erator of dimension six, times a coefficient GF which is of order 1/M 2

W . The
neglected 1/M 4

W term contains operators of dimension eight, and so on. To use
the effective Lagrangian beyond tree level, it is necessary to give a renormaliza-
tion scheme as part of the definition of the effective field theory. Without this
additional information, the effective Lagrangian (46) is meaningless.

It is important to keep in mind that the effective field theory is a differ-
ent theory from the full theory. The full theory of the weak interactions is a
renormalizable field theory. The effective field theory is a non-renormalizable
field theory, and has a different divergence structure from the full theory. The
effective field theory is constructed to correctly reproduce the low-energy effects
of the full theory to a given order in 1/MW . The effective Lagrangian includes
more terms as one works to higher orders in 1/MW . The effective field theory
method is useful only for computing results to a certain order in 1/MW . If one
is interested in the answer to all orders in 1/MW , it is obviously much simpler
to use the full theory.

The renormalization scheme must be carefully chosen to give a sensible ef-
fective field theory. To see what the possible problems might be, consider the
flavor diagonal effective Lagrangian from W and Z exchange

L = −4GF√
2
VuiV

∗
ui (u γµ PL qi) (qi γµ PL u)+(Z− exchange) +O

(
1

M4
W

)
, (50)

where i = d, s, b. At tree level, the W and Z exchange graphs contribute to
flavor diagonal parity violating u-quark interactions at order GF ∼ 1/M 2

W . At
one loop, the interaction (50) induces a Zuu vertex from the graph in Fig. 6
which is of the form

I ∼ 1

M2
W

∫
d4k

1

k2
, (51)

neglecting the γ-matrix structure. The 1/k2 factor is from the two fermion propa-
gators in the loop, and GF has been rewritten as GF ∼ 1/M 2

W . Since the effective
field theory is valid up to energies of order MW , one can estimate the integral
using a momentum space cutoff Λ of order MW ,

I ∼ 1

M2
W

Λ2 ∼ O (1) . (52)

Thus the interaction (50) produces a one loop correction to the Zuu vertex of
order one. Similarly, one can show that higher order terms, such as the dimension
eight operators, are all equally important. A loop graph of the form Fig. 6 (where
the vertex is now a dimension eight operator) is of order

I ′ ∼ 1

M4
W

∫
d4k

1

k2
k2 ∼ Λ4

M4
W

∼ O (1) , (53)

etc. The additional k2 in the integral (53) is from the extra ∂2 at the four-
quark vertex in the dimension eight operator arising from the order p2 term in



18 Aneesh V. Manohar

the expansion of (46). The loop graph with an insertion of the dimension eight
operator is just as important as the loop graph with an insertion of the dimension
six operator; both are of order unity and cannot be neglected. Similarly, all
the higher order terms in the effective Lagrangian are equally important, and
the entire expansion breaks down. A similar problem also occurs in the flavor
changing ∆S = 1 weak interactions that we have been studying, but the analysis
is more subtle because of the GIM mechanism, which is why we considered the
Zuu vertex.

Fig. 6. One loop correction to the Zuu vertex. The solid square represents either the
dimension six four-quark interaction of eq. (50), or the dimension eight four-quark
operator discussed in the text

The effective field theory expansion breaks down if one introduces a mass-
dependent subtraction scheme such as a momentum space cutoff.3 This problem
can be cured if one uses a mass-independent subtraction scheme, such as dimen-
sional regularization and minimal subtraction, in which the dimensional param-
eter µ only appears in logarithms, and never as explicit powers such as µ2. In
such a subtraction scheme β-functions and anomalous dimensions of composite
operators are mass independent. If one estimates the integrals (51) and (53) in
a mass-independent subtraction scheme, one finds

I =
1

M2
W

∫
d4k

1

k2
∼ m2

M2
W

logµ,

I ′ =
1

M4
W

∫
d4k

1

k2
k2 ∼ m4

M4
W

logµ,

(54)

where m is some dimensionful parameter that is not the renormalization scale
µ. It must be some other dimensionful scale that enters the loop graph of Fig. 6,
such as the quark mass or the external momentum. This completely changes the
estimate of the integrals. The integrals are no longer of order one, but are small
provided m�MW . As a result:

3 One way to solve this problem is to use a cutoff Λ � MW . This method does not

allow one to easily match between the full and effective theories, or to include QCD

corrections.
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1. The effective Lagrangian produces a well-defined expansion of the weak am-
plitudes in powers of m/MW , where m is some low scale such as the quark
mass or the external momentum (or ΛQCD when one includes QCD effects).
One has a systematic expansion in powers of some low scale over MW . This
makes precise what is meant by neglecting 1/M 4

W terms in (45).
2. Loop integrals do not have a power law dependence on µ ∼ MW , so one can

count powers of 1/MW directly from the effective Lagrangian. Graphs with
one insertion of terms in Leff of order 1/M 2

W produces amplitudes of order
1/M2

W . Graphs with one insertion of terms of order 1/M 4
W or two insertions

of terms of order 1/M 2
W produce amplitudes of order 1/M 4

W , etc.
3. The effective field theory behaves for all practical purposes like a renormal-

izable field theory if one works to some fixed order in 1/MW . This is because
there are only a finite number of terms in Leff that are allowed to a given
order in 1/MW . Terms of higher order in 1/MW can be safely neglected
because they can never be multiplied by positive powers of MW to produce
effects comparable to lower order terms.

It is well-known that different renormalization schemes lead to equivalent an-
swers for all physical quantities. In an effective field theory, a mass-independent
subtraction scheme is particularly convenient, since it provides an efficient way
of keeping only a few operators in Leff, and in deciding which Feynman graphs
are important. Nevertheless, one must be able to obtain the same results in a
mass-dependent scheme such as a momentum space cutoff. This is true in princi-
ple: a mass dependent scheme has an infinite number of contributions that are of
leading order (from the dimension four, six, eight, . . ., operators). If one resums
this contribution, then the remaining effects (again from an infinite number of
terms) will be of order 1/M 2

W . Resumming the latter leaves a contribution of
1/M4

W , etc. The net result of this procedure is to reproduce the same answer
as that obtained much more simply using a mass-independent renormalization
scheme. The connection between different renormalization schemes is much more
complicated in an effective field theory (which is non-renormalizable), than in a
renormalizable field theory.

7 Decoupling of Heavy Particles

There is one important drawback to using a mass-independent subtraction
scheme – heavy particles do not decouple. 4 This must obviously be true since
the contribution of particles to β-functions does not depend on the particle mass.
For example, a 1 TeV charged lepton makes the same contribution as an electron
to the QED β-function at 1 GeV.

It is instructive to look at the contribution of a charged fermion to the β-
function in QED. Evaluating the diagram of Fig. 7 in dimensional regularization
gives

4 A mass independent subtraction scheme does not satisfy the conditions for the

Appelquist-Carazzone theorem.
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i
e2

2π2

(
pµpν − p2gµν

) [ 1

6ε
− γ

6
−
∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

4πµ2

]
, (55)

where p is the external momentum, m is the fermion mass, γ is Euler’s constant,
and µ is the scale parameter of dimensional regularization.

p p

Fig. 7. One loop contribution to the QED β-function from a fermion of mass m

Mass-Dependent Scheme

In a mass-dependent scheme, such as an off-shell momentum space subtraction
scheme, one subtracts the value of the graph at a Euclidean momentum point
p2 = −M2, to get

−i e
2

2π2

(
pµpν − p2gµν

) [∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

m2 + M2x(1− x)

]
. (56)

The fermion contribution to the QED β-function is obtained by acting with
(e/2)Md/dM on the coefficient of i

(
pµpν − p2gµν

)
,

β (e) = − e
2
M

d

dM

e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

m2 +M2x(1− x)

]

=
e3

2π2

∫ 1

0

dx x(1− x)
M2x(1− x)

m2 + M2x(1− x)
.

(57)

The fermion contribution to the β-function is plotted in Fig. 8. When the fermion
mass m is small compared with the renormalization point M , m � M , the β-
function contribution is

β (e) ≈ e3

2π2

∫ 1

0

dx x(1− x) =
e3

12π2
. (58)

As the renormalization point passes through m, the fermion decouples, and for
M � m, its contribution to β vanishes as

β (e) ≈ e3

2π2

∫ 1

0

dx x(1− x)
M2x(1− x)

m2
=

e3

60π2

M2

m2
. (59)
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Fig. 8. Contribution of a fermion of mass m to the QED β-function. The result is
given for the momentum-space subtraction scheme, with renormalization scale M . The
β-function does not attain its limiting value of e3/12π2 until M >∼ 10m. The fermion
decouples for M � m

The MS Scheme

In the MS scheme, one subtracts the 1/ε pole and redefines 4πµ2e−γ → µ2, to
give

−i e
2

2π2

(
pµpν − p2gµν

) [∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

µ2

]
. (60)

The fermion contribution to the QED β-function is obtained by acting with
(e/2)µd/dµ on the coefficient of i

(
pµpν − p2gµν

)
,

β (e) = − e
2
µ
d

dµ

e2

2π2

[∫ 1

0

dx x(1− x) log
m2 − p2x(1− x)

µ2

]

=
e3

2π2

∫ 1

0

dx x(1− x) =
e3

12π2
,

(61)

which is independent of the fermion mass and µ.
The fermion contribution to the β-function in the MS scheme does not vanish

as m� µ, so the fermion does not decouple as it should. There is another prob-
lem: the finite part of the Feynman graph in the MS scheme at low momentum
is

−i e
2

2π2

(
pµpν − p2gµν

) [∫ 1

0

dx x(1− x) log
m2

µ2

]
, (62)

from (60). For µ � m the logarithm becomes large, and perturbation theory
breaks down. These two problems are related. The large finite parts correct for
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the fact that the value of the running coupling used at low energies is incorrect,
because it was obtained using the “wrong” β-function. The two problems can be
solved at the same time by integrating out heavy particles. One uses a theory
including the fermion when m < µ, and a theory without the fermion when
m > µ. Effects of the heavy particle in the low energy theory are included via
higher dimension operators, which are suppressed by inverse powers of the heavy
particle mass. The matching condition of the two theories at the scale of the
fermion mass is that S-matrix elements for light particle scattering in the low-
energy theory without the heavy particle must match those in the high-energy
theory with the heavy particle.

For the case of a spin-1/2 fermion at one loop, this implies that the running
coupling is continuous at m = µ. The β-function is discontinuous at m = µ,
since the fermion contributes e3/12π2 to β above m and zero below m. The β-
function is a step-function, instead of having a smooth crossover between e3/12π2

and zero, as in the momentum-space subtraction scheme. Decoupling of heavy
particles is implemented by hand in the MS scheme by integrating out heavy
particles at µ ∼ m. One calculates using a sequence of effective field theories
with fewer and fewer particles. The main reason for using the MS scheme and
integrating out heavy particles is that it is much easier to use in practice than the
momentum-space subtraction scheme. Virtually all radiative corrections beyond
one-loop are evaluated in practice using the MS scheme.

There are some instances in which heavy particle effects are important in the
low energy effective theory. An example of this is the top quark in the standard
model. The reason is that the top quark has a mass mt = gtv/

√
2, where gt

is the top quark Yukawa coupling, and v is the vacuum expectation value of
the Higgs field. Taking mt large while keeping v fixed is equivalent to taking gt
large. Diagrams involving top quarks and scalars (either the Higgs boson or the
longitudinal parts of the W and Z) can be large, because they involve factors
of gt which can cancel any 1/mt suppression. We will see an example of this in
the next section, where the ∆S = 2 amplitude is shown to grow with mt. One
can still integrate out the heavy top quark, but the low energy theory contains
operators with coefficients which grow with mt.

8 Weak Interactions at Low Energies: One Loop

The ideas discussed so far can now be applied to the weak interactions at one

loop. The amplitude for the ∆S = 2 amplitude for K0-K
0

mixing is of order G2
F .

The leading contribution to this amplitude in the standard model is from the box
diagram of Fig. 9, where one sums over quarks i, j = u, c, t in the intermediate
states. The sum of the W and unphysical scalar exchange graphs is

Abox =
g4

128π2M2
W

∑

i,j

ξiξj E(xi, xj)
(
d γµ PL s

) (
dγµ PL s

)
, (63)

where
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xi =
m2
i

M2
W

, (64)

ξi = VisV
∗
id, (65)

E(x, y) = −xy
{ 1

x− y

[
1

4
− 3

2

1

x− 1
− 3

4

1

(x − 1)2

]
logx

+
1

y − x

[
1

4
− 3

2

1

y − 1
− 3

4

1

(y − 1)2

]
log y − 3

4

1

(x− 1)(y − 1)

}
,

(66)
and

E(x, x) = −3

2

(
x

x− 1

)3

logx− x
[

1

4
− 9

4

1

x− 1
− 3

2

1

(x− 1)2

]
. (67)

In the limit mu = 0 and mc,t �MW ,5

Abox = −G
2
F

4π2

(
dγµ PL s

) (
dγµ PL s

) [
ξ2
c m

2
c + ξ2

t m
2
t + 2ξcξtm

2
c log

m2
t

m2
c

]
, (68)

using (47). The ∆S = 2 amplitude is of order 1/M 4
W , rather than 1/M 2

W as
one might naively expect, because of the GIM mechanism: The quark mass
independent piece of the ∆S = 2 amplitude is proportional to

ξu + ξc + ξt =
∑

i

VidV
∗
is = 0, (69)

which vanishes because the KM matrix is unitary.

s

s

d

d

i=u,c,t

j=u,c,t

W W

Fig. 9. The box diagram for the ∆S = 2 K0 −K0
mixing amplitude

5 The ∆S = 2 amplitude is considered in the limit mt � MW . This was the approxi-

mation used in the original calculations, and makes it easier for the reader to compare

with the literature. It also simplifies the discussion somewhat, because the t-quark

and c-quark can be treated in a similar fashion.
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Matching at MW

We will now reproduce (68) using an effective field theory calculation to one loop.
At the scale MW , the ∆S = 2 amplitude in the full theory is given by a loop
graph in the effective theory involving two insertions of the ∆S = 1 interaction,
plus a local four-Fermi ∆S = 2 interaction. The sum of the loop graph and
the local ∆S = 2 interaction must reproduce the ∆S = 2 interaction in the
full theory to order 1/M 4

W , as shown schematically in Fig. 10. The tree level
graphs of Figs. 4 and 5 are chosen to be the same in the full and effective theory
to order 1/M 2

W , but this does not imply that the loop graphs in the full and
effective theory are equal to order 1/M 4

W . The two loop graphs in Fig. 10 would
be equal to order 1/M 4

W if the loop graphs in the full and effective theory were
finite. However, in general, the graphs are infinite, and need subtractions. There
is no simple relation between the renormalization prescriptions in the full and
effective theories and one needs to add a local ∆S = 2 counterterm at the scale
MW , which is the difference between the loop graphs in the full and effective
theories. The graphs in the effective theory are more divergent than in the full
theory. In our example, the box diagram in the full theory is convergent by naive
power counting.

Ifull ∼
∫
d4k

(
1

k

)2(
1

k2

)2

, (70)

whereas the graph in the effective theory is quadratically divergent,

Ieff ∼
∫
d4k

(
1

k

)2

, (71)

where we have used a factor of 1/k for each internal fermion line, and 1/k2 for
each internal boson line. In the case of the standard model, the graph in the
effective theory is more convergent than the naive estimate because of the GIM
mechanism. As we have seen, the fermion mass-independent part of the diagram
is proportional to ξu + ξc + ξt, which vanishes. Thus the non-vanishing parts of
the graphs in the full and effective theory must involve a factor of the internal
fermion mass. In fact, there have to be two factors of the fermion mass because
the ∆S = 1 vertex only involves left-handed fields, and a fermion mass changes
a left-handed fermion to a right-handed fermion. Thus in the effective theory,
the non-zero part of the diagram must have two mass insertions on each of the
fermion lines (there is a separate GIM mechanism for each line because of the
independent sums over i and j in (63)), as represented in Fig. 10. This increases
the degree of convergence of the diagram by two for each internal quark line,
and converts it from a diagram that diverges like k2 to a diagram that converges
like 1/k2. Since the diagrams in the full and effective theory are both finite, the
local ∆S = 2 vertex induced at the scale MW vanishes.
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+=

Fig. 10. Box diagram for the ∆S = 2 amplitude in the full and effective theories. The
crosses represent fermion mass insertions. The solid circle is a ∆S = 1 vertex, and the
solid square is a local ∆S = 2 vertex

Matching at mt

The effective Lagrangian remains unchanged down to the scale µ = mt, if one
neglects QCD radiative corrections. At the scale µ = mt, one integrates out
the top quark. The “full theory” is now the effective Lagrangian including six
quarks, and the “effective theory” is the effective Lagrangian including only five
quarks. The ∆S = 1 interactions in the five-quark theory are trivially obtained
from those in the six-quark theory, by dropping all terms that contain the t-
quark. The ∆S = 2 interactions in the five- and six-quark theories are given in
Fig. 11, where the intermediate states in the six-quark theory are the u, c and
t quarks, and in the five-quark theory are the u and c quarks. There is no GIM
cancellation once the top quark has been integrated out of the theory, so the
loop graph in the five-quark theory is divergent, and there will (in principle) be
a non-zero counterterm induced at the scale mt. The value of the counterterm
is the difference in the diagrams in the theories above and below mt, and so is
given by the graphs in the theory above mt that involve at least one t-quark
in the loop, as shown in Fig. 12. All other graphs in the six-quark theory are
identical to the corresponding graphs in the five-quark theory. The loop graphs
in the theory above mt can be calculated quite simply, and lead to the matching
condition

c2(µ = mt − 0) =
G2
F

4π2

[
ξ2
t m

2
t + 2ξcξt

(
m2
t + m2

c

)
+ 2ξuξt

(
m2
t + m2

u

)]
, (72)

where the contributions come from the finite part of Fig. 12, and c2 is the
coefficient of the ∆S = 2 operator

(
d γµ PL s

) (
dγµ PL s

)
. Using the relation

(69) and neglecting mu gives

c2(µ = mt − 0) =
G2
F

4π2

[
−ξ2

t m
2
t + 2ξcξtm

2
c

]
. (73)

Equation (73) is really the difference of two calculations at the scale mt

– one in the full theory and one in the effective theory. Both calculations are
sensitive to infrared effects, such as confinement. However, all infrared effects
cancel in the difference, and c2 (µ = mt + 0) − c2 (µ = mt − 0) is not sensitive
to infrared effects. An arbitrary infrared regulator can be used if the diagrams
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+=
u,c,t

u,c,t

u,c

u,c

Fig. 11. Matching condition at the t-quark scale. The solid square is the ∆S = 2
counterterm induced at µ = mt

+ =
t

t t

u,c

2

Fig. 12. Graphs to be computed to evaluate the ∆S = 2 counterterm induced at
µ = mt

are infrared divergent. The loop graphs will depend on the choice of regulator,
but the matching condition will not. The matching condition is only sensitive to
momenta of order µ = mt, so mass parameters such as mu are short distance
parameters such as the MS mass renormalized at µ = mt.

Scaling from mt to mc

The next step is to scale from the scale mt to mc. The loop graph Fig. 13 is
divergent, because there is no longer a GIM mechanism in the five-quark theory,
and c2 is renormalized proportional to c2

1, where c1 is the coefficient of the
∆S = 1 operator. This implies that there is a renormalization group equation
for c2,

µ
d

dµ
c2 =

1

8π2
c21m

2
c ξcξt, (74)

where the anomalous dimension is computed using the infinite part of Fig. 13.
Integrating this equation from mt to mc gives

c2(mc) = c2(mt) +
1

8π2
c21 m

2
c ξcξt log

mc

mt
,

= c2(mt)−
G2
F

2π2
ξcξt m

2
c log

m2
t

m2
c

,

(75)

substituting c1 = −4GF/
√

2.
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u,c

u,c

Fig. 13. The infinite part of this graph contributes to the renormalization group scaling
of the ∆S = 2 amplitude

Matching at mc

Finally, one integrates out the c quark. This is virtually identical to the matching
condition at the t-quark scale, and gives

c2(µ = mc − 0) = c2(µ = mc + 0) +
G2
F

4π2

[
ξ2
cm

2
c + 2ξcξum

2
c

]
. (76)

Combining (72)–(76) reproduces the the box diagram computation (68).
There are some important features of the ∆S = 2 computation which are

generic to any effective field theory computation. (i) The contributions pro-
portional to the heaviest mass scale mt arise from matching conditions at that
scale. (ii) contributions proportional to lower mass scales (such as mc) arise from
matching at the scale mc, and also from from matching at scales larger than mc

(such as mt). (iii) Contributions proportional to logarithms of two scales arise
from renormalization group evolution between the two scales.

It seems that the effective field theory method is much more complicated
than directly computing the original box diagram in Fig. 9. The effective theory
method has broken the computation of the box diagram into several steps. The
computations involved at each step in the effective field theory are much simpler
than the box diagram calculation. The box diagram involves several different
mass scales in the internal propagators, which leads to complicated Feynman
parameter integrals that must be evaluated. The matching condition computa-
tions in the effective field theory each involve only a single mass scale, and are
much simpler. One can contrast the full answer (68) with the individual pieces
of the effective field theory calculation in (72)–(76). Furthermore, in the effec-
tive field theory calculation it is trivial to include the leading logarithmic QCD
corrections to the ∆S = 2 amplitude. The corresponding computation in the full
theory is far more difficult, and involves computing two loop diagrams such as
the one in Fig. 14.
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Fig. 14. A QCD radiative correction to the box diagram

QCD Corrections

The leading logarithmic corrections to the ∆S = 2 amplitude sum all correc-
tions of the form (αs log r)n, where r is large ratio of scales such as MW /mc, but
neglect corrections of the form αs(αs log r)n. The QCD corrections to the match-
ing condition only involve a single scale, and do not have any large logarithms.
For example, the matching condition at the scale mt only involves corrections
that depend on αs(µ) and logmt/µ. Evaluating these corrections by setting the
MS parameter µ = mt implies that there is no leading logarithmic correction
to the matching condition. The only leading logarithmic QCD corrections arise
from renormalization group scaling between different scales. This computation
is straightforward, and only involves the infinite parts of one loop diagrams. The
renormalization group equation (74) is replaced by

µ
d

dµ
c2(µ) =

1

8π2
m2
c(µ) c21(µ) ξcξt + γ2(µ) c2(µ), (77)

where mc has been replaced by the running mass, c1 has been replaced by the
running coupling c1(µ), and γ2 is the anomalous dimension

γ2 =
αs(µ)

π
, (78)

of the ∆S = 2 operator (dγµ PL s) (d γµ PL s), which can be obtained from the
infinite part of Fig. 15. The running mass mc(µ) satisfies the renormalization
group equation

µ
d

dµ
mc(µ) = γm mc(µ) = −2αs(µ)

π
mc(µ). (79)

If c1 satisfies a simple renormalization group equation of the form

µ
d

dµ
c1(µ) = γ1 c1(µ), (80)

one can solve (77)–(80) to obtain the QCD corrected value for c2(µ). At one
loop, it is convenient to define b and γ̂i

µ
d

dµ
g = β(g) = −b g3

16π2
+ . . . , (81)
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and

γi = γ̂i
g2

16π2
+ . . . , (82)

for i = 1, 2,m. One can then solve (79) and (80),

mc(µ) = mc(µ
′)

[
g(µ)

g(µ′)

]−γ̂m/b
=

[
αs(µ

′)

αs(µ)

]γ̂m/2b
,

c1(µ) = c1(µ′)

[
g(µ)

g(µ′)

]−γ̂1/b

=

[
αs(µ

′)

αs(µ)

]γ̂1/2b

.

(83)

Substituting (83) into (77) and integrating gives

c2(mc) = c2(mt)

[
αs(mt)

αs(mc)

]γ̂2/2b

+
m2
c(mt) c

2
1(mt)

g(mt)2 (2 + 2γ̂1/b+ 2γ̂m/b− γ̂2/b)

[(
αs(mt)

αs(mc)

)2+2γ̂1/b+2γ̂m/b

−
(
αs(mt)

αs(mc)

)γ̂2/2b
]
.

(84)

Fig. 15. Graph contributing to the anomalous dimension of the ∆s = 2 operator
(d γµ PL s) (d γµ PL s)

The actual computation of these effects in the standard model is more in-
volved, because the ∆S = 1 Lagrangian does not satisfy a simple renormalization
group equation of the form (80). There is operator mixing, and (80) is replaced
by a matrix equation. Nevertheless, it is possible to compute the results using
an effective field theory method, though the final form of the answer is more
complicated than (84). The reader is referred to the papers by Gilman and Wise
for details. The computation of QCD corrections in the full theory is far more
complicated, and has never been done.

To compare the advantages and disadvantages of the full and effective theory
computation, let us concentrate only on the mt part of the ∆S = 2 amplitude.
The effective field theory computation gives the ∆S = 2 amplitude as an expan-
sion in powers of mt/MW , and we have computed the leading term in (68). The
general form of the effective field theory result is
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answer =

(
mt

MW

)2(
αs(MW )

αs(mt)

)γ2/2b

+

(
mt

MW

)4(
αs(MW )

αs(mt)

)γ4/2b

+ . . . (85)

where γi are the anomalous dimensions of the dimension six, eight, etc. operators.
(For example, compare with (84).) Evaluating each of these anomalous dimension
is a separate computation. Equation (85) is useful if there is a large ratio of scales,
mt/MW � 1, so that one only needs a few terms in the expansion (85). The full
theory computation (63) sums up the entire series, and gives an answer of the
form

answer = f(mt/MW ), (86)

which is valid for any value of the ratio mt/MW . The computations involved in
(86) are necessarily more complicated than those for the effective field theory,
because one obtains the entire functional form of the answer, rather than the first
few terms in a series expansion. However, it is not possible to compute the leading
logarithmic QCD corrections to (86), since each term in the expansion has a
different anomalous dimension. For the c quark, it is more important to sum the
leading QCD corrections, than to include higher order terms in mc/MW ∼ 1/50,
and the effective theory method is useful. The recently measured value of the
top quark mass indicates that the ratio mt/MW ∼ 2. In this case, it is more
important to retain the entire form of the mt/MW dependence, than to include
the QCD radiative corrections. The way the calculation is done in practice is
to integrate out the t-quark and W -boson together at some scale µ which is
comparable to both mt and MW , and then use an effective theory to scale down
to mc so as to include the QCD corrections between {MW ,mt} and mc. Clearly,
the ideal procedure would be to retain the entire functional form (86), as well as
the entire QCD radiative correction. This has been done in a toy model using a
non-local effective Lagrangian, but it is not known how to do this in general.

A very different example where an infinite set of anomalous dimensions can
be computed is the QCD evolution of parton structure functions. In QCD, the
Altarelli-Parisi splitting functions for the parton distribution functions contain
the same information as the infinite set of anomalous dimensions of the twist-
two operators. The distribution functions can be written as matrix elements
of non-local operators, and the one-loop anomalous dimension is a function,
whose moments give the anomalous dimensions of the infinite tower of twist two
operators.

9 The Non-linear Sigma Model

The previous results discussed effective field theories in the perturbative regime,
where one could compute the effective Lagrangian from the full theory in a
systematic perturbative expansion. One can also apply effective field theory ideas
to situations where one can not derive the effective Lagrangian from the full
theory directly. The classic example of this is the use of non-linear sigma models
to study spontaneously broken global symmetries, and in particular, the use of
chiral Lagrangians to study pion interactions in QCD.
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Consider first the linear sigma model with Lagrangian

L = 1
2∂µφφ · ∂µφφ− λ(φφ · φφ− v2)2, (87)

where φφ = (φ1, . . . , φN ) is a real N -component scalar field. This theory will
illustrate some ideas which will be needed for the study of chiral symmetry
breaking in QCD. The Lagrangian (87) has a global O(N ) symmetry under
which φφ transforms as an O(N ) vector. The potential has been chosen so that
it is minimized for |φφ| = v. The set of field configurations where |φφ| = v is
known as the vacuum manifold, and in our example, it is the set of points
φφ = (φ1, . . . , φN), with φ2

1 + φ2
2 + . . .+ φ2

N = v2, i.e. it is the N − 1 dimensional
sphere SN−1. The O(N ) symmetry can be used to rotate the vector 〈φφ〉 to
a standard direction, which can be chosen to be (0, 0, . . . , v), the north pole
of the sphere. The vacuum of the Lagrangian has spontaneously broken the
O(N ) symmetry down to the O(N − 1) subgroup which acts on the first N − 1
components. The other generators of O(N ) do not leave (0, 0, . . . , v) invariant.
O(N ) has N (N − 1)/2 generators, so the number of Goldstone bosons is equal
to the number of broken generators, N (N − 1)/2− (N − 1)(N − 2)/2 = N − 1.
The N − 1 Goldstone bosons correspond to rotations of the vector φφ, which
leave its length unchanged. The potential energy V is unchanged under rotations
of φφ, so these modes are massless. The remaining mode is a radial excitation
which changes the length of φφ, and produces a massive excitation, with mass
mH =

√
8λ v.

It is convenient to switch to “polar coordinates”, and define

φφ = (ρ + v) ei
∑

s
Xs·πs




0
0
.
.
.
1



, (88)

where Xs, s = 1, . . . , N − 1 are N − 1 broken generators, and πs and ρ are a
new basis for the N fields. This change of variables is only well-defined for small
angles πs. The Lagrangian in terms of the new fields is

L =
1

2
∂µρ∂

µρ − λ
(
ρ2 + 2ρv

)2
+

1

2
(ρ + v)

2
[
∂µe
−i
∑

s
Xs·πs∂µei

∑
s
Xs ·πs

]
NN

,

(89)
where [ ]NN is the NN element of the matrix. At energies small compared to the
radial excitation mass

√
8λ v, the ρ field can be neglected, and the Lagrangian

reduces to

L =
1

2
v2
[
∂µe
−i
∑

s
Xs·πs∂µei

∑
s
Xs ·πs

]
NN

, (90)

which describes the self-interactions of the Goldstone bosons.
There are some generic features of Goldstone boson interactions that are easy

to understand:
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1. The Goldstone boson fields are derivatively coupled. The Goldstone bosons
describe the local orientation of the φφ field. A constant Goldstone boson
field is a φφ field that has been rotated by the same angle everywhere in
spacetime, and corresponds to a vacuum that is equivalent to the standard
vacuum 〈φφ〉 = (0, 0, . . . , 1). Thus the Lagrangian must be independent of πs

when πs is a constant, so only gradients of πs appear in the Lagrangian.
2. The effective Lagrangian describes a theory of weakly interacting Goldstone

bosons at low energy. The Goldstone boson couplings are proportional to
their momentum, and so vanish for low-momentum Goldstone bosons.

3. The Goldstone boson Lagrangian is non-linear in the Goldstone boson
fields. The Goldstone boson Lagrangian describes the dynamics of fields
constrained to live on the vacuum manifold. The constraint equation,
φ2

1 +φ2
2 + . . .+φ2

N = v2, is non-linear, and leads to a non-linear Lagrangian.
4. The vacuum manifold is generically curved (like our sphere SN−1), and does

not have a set of global coordinates. The πs coordinates defined in (88) only
make sense for small fluctuations of the Goldstone boson fields about the
north pole, which is adequate for perturbation theory. For studying non-
perturbative effects or global properties, it is better not to introduce the
angular coordinates, but to write the Lagrangian directly in terms of fields
that take values on the vacuum manifold, π(x) ∈ SN−1.

5. The amplitude for the broken symmetry currents to produce a Goldstone
boson from the vacuum is proportional to the symmetry breaking strength
v.

10 The CCWZ Formalism

The general formalism for effective Lagrangians for spontaneously broken sym-
metries was worked out by Callan, Coleman, Wess, and Zumino. Consider a the-
ory in which a global symmetry group G is spontaneously broken to a subgroup
H. The vacuum manifold is the coset space G/H. In our example, G = O(N ),
H = O(N − 1), and G/H = O(N )/O(N − 1) = SN−1.

We would like to choose a set of coordinates which describe the local orienta-
tion of the vacuum for small fluctuations about the standard vacuum configura-
tion. Let Ξ(x) ∈ G be the rotation matrix that transforms the standard vacuum
configuration to the local field configuration. The matrix Ξ is not unique: Ξh,
where h ∈ H, gives the same field configuration, since the standard vacuum is in-
variant under H transformations. In our example, one can describe the direction
of the vector φφ by giving the O(N ) matrix Ξ, where

φφ(x) = Ξ(x)




0
0
.
.
.
v



. (91)



Effective Field Theories 33

The same configuration φφ(x) can also be described by Ξ(x)h(x), where h(x) is
a matrix of the form

h(x) =

(
h′(x) 0

0 1

)
, (92)

with h′(x) an arbitrary O(N − 1) matrix, since

(
h′(x) 0

0 1

)




0
0
.
.
.
v




=




0
0
.
.
.
v



. (93)

The CCWZ prescription is to pick a set of broken generators X, and choose

Ξ(x) = eiX·π(x). (94)

Consider the O(N ) theory for N = 3, which is the theory of a vector φφ in three-
dimensions, and so is easy to visualize. The symmetry group G is the group
G = O(3) of rotations in three-space. The standard vacuum configuration 〈φφ〉
can be chosen to be φφ pointing towards the north pole N , and the unbroken
symmetry group H = O(2) = U (1) is rotations about the axis ON , where O is
the center of the sphere (see Fig. 16). The group generators are J1, J2, J3, and
the unbroken generator is J3, where Jk generate rotations about the kth axis.
The CCWZ prescription is to choose

Ξ(x) = ei[J1π(x)+J2π2(x)] (95)

to represent φφ along OA. The matrix Ξ rotates a vector pointing along the ON
axis to φφ = OA by rotating along a line of longitude.

Under a global symmetry transformation g, the matrix Ξ(x) is transformed
to the new matrix gΞ(x), since φφ(x) → gφφ(x). (Note that g is a global trans-
formation, and does not depend on x.) The new matrix gΞ(x) is no longer in
standard form, (94), but can be written as

g Ξ = Ξ ′ h, (96)

since two matrices g Ξ and Ξ ′ which describe the same field configuration dif-
fer by an H transformation. That h is non-trivial is a well-known property of
rotations in three dimensions. Take an object and rotate it from N to A and
then to B. This transformation is not the same as a direct rotation from N to
B, but can be written as a rotation about ON , followed by a rotation from N
to B. The transformation h in (96) is non-trivial because the Goldstone boson
manifold G/H is curved.

The transformation (96) is usually written as

Ξ(x)→ g Ξ(x) h−1(g,Ξ(x)), (97)
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g Ξ

−

N
A

B

O

Ξ

Ξ

Fig. 16. The vacuum manifold for the O(3) sigma model. The standard configuration
φφ is along ON . Under the transformation g, A gets mapped to B

where we have made clear the implicit dependence of h on x through its de-
pendence on g and Ξ(x). Equations (94) and (97) give the CCWZ choice for
the Goldstone boson field, and its transformation law. Any other choice gives
the same results for all observables, such as the S-matrix, but does not give the
same off-shell Green functions.

11 The QCD Chiral Lagrangian

The CCWZ formalism can now be applied to QCD. In the limit that the u, d
and s quark masses are neglected, the QCD Lagrangian has a SU (3)L×SU (3)R
chiral symmetry under which the left- and right-handed quark fields transform
independently,

ψL(x)→ L ψL(x), ψR(x)→ R ψR(x), (98)

where

ψ =



u
d
s


 . (99)

The SU (3)L × SU (3)R chiral symmetry is spontaneously broken to the vector
SU (3) subgroup by the

〈
ψψ
〉

condensate. The symmetry group is G = SU (3)L×
SU (3)R, the unbroken group is H = SU (3)V , and the Goldstone boson manifold
is the coset space SU (3)L × SU (3)R/SU (3)V which is isomorphic to SU (3).
The generators of G are T aL and T aR which act on left and right handed quarks
respectively, and the generators of H are the flavor generators T a = T aL + T aR.
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There are two commonly used bases for the QCD chiral Lagrangian, the ξ-basis
and the Σ-basis, and we will consider them both. There are many simplifications
that occur for QCD because the coset space G/H is isomorphic to a Lie group.
This is not true in general; in the O(N ) model, the space SN−1 is not isomorphic
to a Lie group for N 6= 4.

The ξ-basis

The unbroken generators of H plus the broken generators X span the space
of all symmetry generators of G. One choice of broken generators is to pick
Xa = T aL − T aR. Let the SU (3)L × SU (3)R transformation be represented in
block diagonal form,

g =

[
L 0
0 R

]
, (100)

where L and R are the SU (3)L and SU (3)R transformations, respectively. The
unbroken transformation have the form (100) with L = R = U ,

h =

[
U 0
0 U

]
. (101)

The Ξ field is then defined using the CCWZ prescription (94)

Ξ(x) = eiX·π(x) = exp i

[
T · π 0

0 −T · π

]
=

[
ξ(x) 0

0 ξ†(x)

]
, (102)

where
ξ = eiT ·π (103)

denotes the upper block of Ξ(x). The transformation rule (97) gives
[
ξ(x) 0

0 ξ†(x)

]
→
[
L 0
0 R

] [
ξ(x) 0

0 ξ†(x)

] [
U−1 0

0 U−1

]
. (104)

This gives the transformation law for ξ,

ξ(x)→ L ξ(x) U−1(x) = U (x) ξ(x) R†, (105)

which defines U in terms of L, R, and ξ.

The Σ basis

The Σ-basis is obtained from the CCWZ prescription using Xa = T aL for the
broken generators. In this case, (94) gives

Ξ(x) = eiX·π(x) = exp i

[
T · π 0

0 0

]
=

[
Σ(x) 0

0 1

]
(106)

where
Σ = eiT ·π (107)
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denotes the upper block of Ξ(x). The transformation law (97) is
[
Σ(x) 0

0 1

]
→
[
L 0
0 R

] [
Σ(x) 0

0 1

] [
U−1 0

0 U−1

]
, (108)

which gives U = R, and
Σ(x)→ L Σ(x) R†. (109)

Comparing with (105), one sees that Σ and ξ are related by

Σ(x) = ξ2(x). (110)

The Lagrangian

The Goldstone boson fields are angular variables, and are dimensionless. When
writing down effective Lagrangians in field theory, it is convenient to use fields
which have mass dimension one, as for any other spin-zero boson field. The
standard choice is to use

ξ = eiT ·π/f , Σ = e2iT ·π/f , (111)

where f ∼ 93 MeV is the pion decay constant. The π matrix is

ππ = πaT a, (112)

where the group generators have the usual normalization tr T aT b = δab/2,

ππ =
1√
2




1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K
0 − 2√

6
η


 . (113)

The low energy effective Lagrangian for QCD is the most general possible
Lagrangian consistent with spontaneously broken SU (3) × SU (3) symmetry.
Unlike our weak interaction example, one cannot simply compute the effective
Lagrangian directly from the original QCD Lagrangian. The connection between
the original and effective theories is non-perturbative. The effective Lagrangian
has an infinite set of unknown parameters, but we will see that it can still be
used to obtain non-trivial predictions for experimentally measured quantities.

It is easy to construct the most general Lagrangian invariant under the trans-
formationΣ → LΣR†. The most general invariant term with no derivatives must
be the product of terms of the form TrΣΣ† . . .ΣΣ†, where Σ and Σ†’s alter-
nate. However, ΣΣ† = 1, so all such terms are constant, and independent of the
pion fields. This is just our old result that all Goldstone bosons are derivatively
coupled. The only invariant term with two derivatives is

L2 =
f2

4
Tr ∂µΣ∂

µΣ†. (114)

Expanding Σ in a power series in the pion field gives
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L2 = Tr ∂µπ∂
µπ +

1

3f2
Tr [π, ∂µπ]

2
+ . . . . (115)

The coefficient of the two-derivative term in (114) is fixed by requiring that the
kinetic term for the pions in (115) has the standard normalization for scalar
fields. The Lagrangian (114) only has terms with an even number of pions, since
the pion is a pseudoscalar. The Lagrangian (114) determines all the multi-pion
scattering amplitudes to order p2 in terms of a single constant f . For example,
the π − π scattering amplitude is given by the term Tr [π, ∂µπ]

2
/3f2, etc.

The Chiral Currents

Noether’s theorem can be used to compute the SU (3)L and SU (3)R currents. If
a Lagrangian L is invariant under an infinitesimal global symmetry transforma-
tion with parameter ε, the current jµ is given by computing the change of the
Lagrangian when one makes the same transformation, with ε a function of x,

δL = ∂µε(x) jµ(x). (116)

The infinitesimal form of the SU (3)L transformation Σ → LΣ is

Σ → Σ + iεaL T
aΣ, (117)

where L = exp iεaLT
a ≈ 1 + iεaLT

a + . . .. The change in (114) under (117) is

δL = ∂µε
a
L Tr T aΣ∂µΣ† (118)

so that the SU (3)L currents are

jµL =
i

2
f2 Tr T aΣ∂µΣ†. (119)

The right handed currents are obtained by applying the parity transformation,
π(x)→−π(−x) or by making an infinitesimal SU (3)R transformation, so that

jµR =
i

2
f2 Tr T aΣ†∂µΣ. (120)

The axial current has the expansion

jµaA = jµaR − j
µa
L = −f∂µπa + . . . (121)

The matrix element 〈0| jµaA
∣∣πb
〉

= ifpµδab, so that f is the pion decay constant.
The experimental value of the π decay rate, π→ µν determines f ≈ 93 MeV.

The low-energy effective theory of the weak interactions is an expansion in
some low mass scale (such as mc or ΛQCD) over MW . The QCD chiral Lagrangian
is an expansion in derivatives, and so is an expansion in p/Λχ. The pion couplings
are weak, as long as the pion momentum is small compared with Λχ. There are
two important questions that have to be answered before one can use the effective
Lagrangian: (i) What terms in the effective Lagrangian are required to compute
to a given order in p/Λχ? (ii) What is the value of Λχ? Then one has an estimate
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of the neglected higher-order terms in the expansion, and the energy at which
the effective theory breaks down.

It is useful to eliminate all redundant terms in the effective Lagrangian. One
can often eliminate many terms in the effective Lagrangian by making suitable
field redefinitions. Field redefinitions are not very useful in renormalizable field
theories, because they make renormalizable Lagrangians look superficially non-
renormalizable. For example, a field redefinition

φ→ φ+ εφ2, (122)

turns

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ4 (123)

into

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2−λφ4 +ε

(
2φ∂µφ∂

µφ−m2φ3 − 4λφ5
)

+O
(
ε2
)
, (124)

which looks superficially like a non-renormalizable interaction. Equations (124)
and (123) define identical theories, and the field redefinition (122) has turned
a simple Lagrangian into a more complicated one. However, in the case of non-
renormalizable theories which contain an infinite number of terms, one can use
field redefinitions to eliminate many higher-order terms in the effective La-
grangian (see Ref. 7). The way this is usually done in practice is to use the
equations of motion derived from the lowest-order terms in the effective La-
grangian to simplify or eliminate higher order terms.

Weinberg’s Power Counting Argument

The QCD chiral Lagrangian is

L =
∑

k

Lk, (125)

where L2, L4, etc. are the terms in the Lagrangian with two derivatives, four
derivatives, and so on. Consider an arbitrary loop graph, such as the one in
Fig. 17. It contains m2 interaction vertices that come from terms in L2, m4

interaction vertices from terms in L4, etc. The general form of the diagram is

A =

∫ (
d4p
)L 1

(p2)
I

∏

k

(
pk
)mk

, (126)

where L is the number of loops, I is the number of internal lines, and p represents
a generic momentum. The factors are easy to understand: there is a d4p integral
for each loop, each internal boson propagator is 1/p2, and each vertex in Lk gives
a factor of pk. In a mass-independent subtraction scheme, the only dimensional
parameters are the momenta p. Thus the amplitude A must have the form A ∼
pD, where
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D = 4L− 2I +
∑

k

k mk, (127)

from (126). For any Feynman graph, one can show that

V − I + L = 1, (128)

where V is the number of vertices, I is the number of internal lines, and L is the
number of loops. Combining (127),(128), and using V =

∑
kmk, one gets

D = 2 + 2L +
∑

k

(k − 2)mk. (129)

The chiral Lagrangian starts at order p2, so k ≥ 2, and all terms in (129) are non-
negative. As a result, only a finite number of terms in the effective Lagrangian
are needed to work to a fixed order in p, and the chiral Lagrangian acts like a
renormalizable field theory. For example, to compute the scattering amplitudes
to order p4, one needs

4 = 2 + 2L+
∑

k

(k − 2)mk, (130)

which has the solutions L = 0, m4 = 1, mk>4 = 0, or L = 1 and mk>2 = 0. That
is, one only needs to consider tree level diagrams with one insertion of L4, or
one-loop graphs with the lowest order Lagrangian L2 to compute all scattering
amplitudes to order p4.

Fig. 17. A loop graph for multipion interactions

Naive Dimensional Analysis

Consider the π − π scattering amplitude to order p4. The power counting argu-
ment implies that there are two contributions to this: a tree level graph with one
insertion of L4, and a loop graph using L2. The loop graph is of order

I ∼
∫

d4k

(2π)
4

k2

f2

k2

f2

1

k4
, (131)
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where 1/k4 is from the two internal propagators, and each four-pion interaction
vertex is of order k2/f2, from (115). Here k denotes a generic internal momentum
in the Feynman diagram. Estimating this integral gives

I ∼ p4

16π2

1

f4
logµ, (132)

where µ is the MS renormalization scale, and p represents a generic external
momentum. A four derivative operator in the Lagrangian of the form

a tr ∂µΣ∂
µΣ†∂νΣ∂

νΣ†, (133)

produces a four-pion interaction of order ap4/f4 when one expands the Σ field
in a power series in π/f . The total four-pion amplitude, which is the sum of the
tree and loop graphs, is µ-independent. A shift in the renormalization scale µ
is compensated for by a corresponding shift in a. A change in µ of order one
produces a shift in a of order δa ∼ 1/16π2. Generically, a must be at least as
big as δa,

|a| >∼ |δa| ∼
1

16π2
, (134)

because a shift in the renormalization point of order one produces a shift in a of
this size. Write the effective Lagrangian as

L =
f2

4

[
tr ∂µΣ∂

µΣ† +
1

Λ2
χ

L4 +
1

Λ4
χ

L6 + . . .

]
(135)

where 1/Λχ is the expansion parameter of the effective Lagrangian, i.e. (135)
gives an expansion for scattering amplitudes in powers of p/Λχ. The estimate
(134) for the size of the four derivative term implies that

Λχ <∼ 4πf. (136)

One can show that a similar estimate holds for all the higher order terms in
L, i.e. the six derivative term has a coefficient of order 1/Λ4

χ, etc. Numerous
calculations suggest that in QCD, the inequality (136) can be replaced by the
estimate

Λχ ∼ 4πf ∼ 1 GeV, (137)

for the expansion parameter of the effective Lagrangian. This parameter is large
enough that one can apply chiral Lagrangians to low energy processes involv-
ing pions and kaons. If the expansion parameter were f instead of 4πf , chiral
Lagrangians would not be useful even for pions, since mπ > f .

The naive dimensional analysis estimate equivalent to (135) is that a term
in the Lagrangian has the form

f2Λ2
χ

(
π

f

)n(
∂

Λχ

)m
, (138)

as can be seen by expanding the (135) in the pion fields. For example, the kinetic
term Tr ∂µΣ ∂µΣ† has a coefficient of order
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f2Λ2
χ

(
∂

Λχ

)2

∼ f2, (139)

the four derivative term Tr ∂µΣ ∂µΣ†∂νΣ ∂νΣ† has a coefficient of order

f2Λ2
χ

(
∂

Λχ

)4

∼ f2

Λ2
χ

∼ 1

16π2
, etc., (140)

which agrees with the earlier estimates.

12 Explicit Symmetry Breaking

The light quark masses explicitly break the chiral SU (3)L × SU (3)R symmetry
of the QCD Lagrangian. The quark mass term in the QCD Lagrangian is

Lm = −ψLMψR + h.c., (141)

where

M =



mu 0 0
0 md 0
0 0 ms


 , (142)

is the quark mass matrix. The mass term Lm can be treated as chirally invariant
if M is an external field that transforms as

M → LMR† (143)

under chiral SU (3)L × SU (3)R. The symmetry breaking terms in the chiral
Lagrangian are terms that are invariant when M has the transformation rule
(143). The symmetry is then explicitly broken when M is fixed to have the value
(142). The lowest order term in the effective Lagrangian to first order in M is

Lm = µ
f2

2
tr
(
Σ†M + M †Σ

)
, (144)

which breaks the degeneracy of the vacuum and picks out a particular orientation
for Σ. All vacua Σ = constant are no longer degenerate, and Σ = 1 is the lowest
energy state. Expanding in small fluctuations about Σ = 1 gives

Lm = −2µ trMπ2. (145)

Substituting (142) and (113) for M and π and evaluating the trace gives

M2
π± = µ (mu + md) +∆M2,

M2
K± = µ (mu + ms) + ∆M2,

M2

K0,K
0 = µ (md +ms) ,

(146)

and the π0, η mass matrix
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µ

[
mu + md

mu−md√
3

mu−md√
3

1
3 (mu + md + 4ms)

]
. (147)

To first order in the isospin-breaking parameter mu −md, the matrix (147) has
eigenvalues

M2
π0 = µ (mu +md) ,

M2
η =

µ

3
(mu +md + 4ms) .

(148)

There is an isospin breaking electromagnetic contribution to the charged Gold-
stone boson masses ∆M 2 (included in (146)), which is comparable in size to
the isospin breaking from mu−md. To lowest order in SU (3) breaking, ∆M 2 is
equal for π± and K±, and vanishes for the neutral mesons. The absolute values
of the quark masses can not be determined from the meson masses, because they
always occur in the combination µm, and µ is an unknown parameter. However,
the meson masses can be used to obtain quark mass ratios. From (146)–(147)
one gets

mu

md
=
M2
K+ −M2

K0 + 2M2
π0 −M2

π+

M2
K0 −M2

K+ +M2
π+

, (149)

ms

md
=
M2
K0 + M2

K+ −M2
π+

M2
K0 −M2

K+ + M2
π+

, (150)

and the Gell-Mann–Okubo formula

4M2
K0 = 3M2

η + M2
π . (151)

Substituting the measured meson masses gives the lowest order values

mu

md
= 0.55,

ms

md
= 20.1. (152)

and 0.99 GeV2 = 0.92 GeV2 for the Gell-Mann–Okubo formula.
There is an ambiguity in extracting the light quark masses at second order

in M . The matrices M and (detM )M †−1 both have the same SU (3)L×SU (3)R
transformation properties, and are indistinguishable in the chiral Lagrangian.
One has an ambiguity of the form

M →M + λ (detM )M †−1 (153)

in the quark mass matrix at second order in M . This transformation can be
written explicitly as



mu 0 0
0 md 0
0 0 ms


→



mu + λmdms 0 0

0 md + λmums 0
0 0 ms + λmumd


 . (154)

One cannot determine the light quark mass ratios to second order using chiral
perturbation theory alone, because of the ambiguity (153). This ambiguity can
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be numerically significant for the ratio mu/md, since it produces an effective u-
quark mass of order mdms/Λχ ∼ mdm

2
K/Λ

2
χ ∼ 0.3md. The value of mu is very

important, because mu = 0 solves the strong CP problem. The second order
term (detM )M †−1 produces an effective u-quark mass that is indistinguishable
from mu in the chiral Lagrangian. Various estimates of the ratio mu/md from
different processes (e.g. meson masses, baryon masses η → 3π) all tend to give
the ratio mu/md ∼ 0.56, so mu can only be zero if second-order effects in
M were of the same size in different processes. One way this could occur is if
instantons effects at the scale µ ∼ 1 GeV were important. An instanton produces
an effective operator of the form (detM )M †−1. If instantons at µ ∼ 1 GeV are
important, they would lead to an effective mass matrix in the chiral Lagrangian
of the form Meff = M +λ detMM−1, which would be the same for all processes.
This produces (mu/md)eff ∼ 0.56 in all processes, while still having mu = 0.
The only way to distinguish mu from (mu)eff is to do a reliable computation
that relates the QCD Lagrangian directly to the chiral Lagrangian.

An on-shell particle has p2 = M2. Since the meson mass-squared is propor-
tional to the quark mass M , the quark matrix M counts as two powers of p for
chiral power counting, i.e. terms in L2 contain two powers of p or one power
of M , terms in L4 contain four powers of p, two powers of p and one power of
M , or two powers of M , etc. One can then show that the power counting argu-
ments derived earlier still hold for the effective Lagrangian, including symmetry
breaking.

13 π-π Scattering

We now have all the pieces necessary to compute the π-π scattering amplitude
near threshold. The full chiral Lagrangian to order p2 is

L2 =
f2

4
tr ∂µΣ∂

µΣ† + µ
f2

2
tr
(
Σ†M +M †Σ

)
. (155)

Expanding this to fourth order in the pion fields gives

L2 =
1

3f2
Tr [π, ∂µπ]

2
+

2

3
µTrMπ4. (156)

The π-π scattering amplitude has two contributions, one from the kinetic term
and the other from the mass term. Adding the two contributions reproduces the
result of Weinberg. The details are left as a homework problem.

The π-π scattering amplitude at order p4 has two contributions, the one loop
diagram Fig. 18(a) involving only the lowest order Lagrangian, and a tree graph
Fig. 18(b) with terms from L4. The answer has the form

A

16π2
p4 logp2/µ2 + L(µ) p4, (157)

where the first term is from the loop diagram, and the second term is the tree
graph contribution from L4. The coefficient A of the loop graph is completely
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determined, since there are no unknown parameters in L2. The loop graph must
have a logarithmic term, the so-called chiral logarithm. When s > 4m2

π , the π-π
scattering amplitude must have an imaginary part from the physical ππ interme-
diate state, by unitarity. The imaginary part is generated by the chiral logarithm.
When s > 4m2

π, the argument of the logarithm changes sign, and one gets an
imaginary part since log(− |r|) = log |r|+ iπ. The imaginary part is completely
determined by the tree level graph of order p2, so that the chiral logarithm has
a known coefficient. The tree level terms in L4 are known as low energy con-
stants or counterterms.6 The total scattering amplitude is µ independent, so the
counterterms satisfy the renormalization group equation

µ
d

dµ
L(µ) =

A

8π2
. (158)

The naive dimensional analysis argument discussed earlier is the statement that
the counterterm L(µ) is typically at least as big as the anomalous dimension
A/8π2.

Fig. 18. Diagrams contributing to π−π scattering to order p4. The solid dot represents
interaction vertices from L2, and the solid square represents interactions from L4

A generic chiral perturbation theory amplitude has the form (157). There is a
chiral logarithm and some counterterms. If one works in a systematic expansion
in powers of p, the chiral logarithm is determined completely in terms of lower
order terms in the Lagrangian. The counterterms involve additional unknown
parameters. There are three main approaches used in the literature to extract
useful information from (157):

1. One can hope that the chiral logarithm is numerically more important than
the counterterm, when one picks a reasonable renormalization point such as
µ ∼ 1 GeV. This is formally correct, since p4 log p2/µ2 � p4 in the limit
p → 0. However, in practical examples, p2 is of order m2

π or m2
K , and the

logarithm is −3.9 and −1.4, which is not very large (especially for the K).

6 There are two parts to L4. There is the infinite part of the coefficient (of order

1/ε in dimensional regularization), which is used to cancel divergences from loops

using vertices in L2, and the finite part which affects measurable quantities. The

infinite parts are usually never discussed explicitly, and the finite parts are called

counterterms.
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Nevertheless, the chiral logarithm provides useful information. For example,
the correction to fK/fπ has the form

fK
fπ

= 1− 3M2
K

64π2f2
logM 2

K/µ
2 + L(µ). (159)

Setting µ ∼ Λχ, and neglecting the counterterm gives fK/fπ = 1.19, com-
pared with the experimental value of 1.2. The chiral logarithm contribution
alone gives a reasonable estimate of the size of the correction (this is just
naive dimensional analysis at work), but it also gets the sign correct. The
chiral logarithms are also useful in comparing numerical QCD calculations
in the quenched approximation, which do not have the full chiral logarithms,
with experimental data.

2. The systematic approach which has been used by Gasser and Leutwyler is
to write down the most general Lagrangian to order p4, which contains eight
counterterms. This is used to compute N > 8 different processes, so that all
the counterterms are determined, and one has non-trivial predictions for the
remainingN−8 amplitudes. This procedure has been more-or-less completed
in the meson sector to order p4, and the results are in good agreement with
experiment. At order p6, there are over 100 terms in the Lagrangian.

3. The third method is to find a process for which there is no counterterm.
Typically, this occurs for electromagnetic processes involving neutral parti-
cles, such as K0

S → γγ. Since there is no counterterm, the loop graph must
be finite, but it can be non-zero. For example, the leading contribution to
K0
S → γγ is from the loop graph Fig. 19, and gives an amplitude of order

p2. There are no counterterms for this process at this order. The amplitude
at order p2 is in good agreement with the experimental branching ratio for
this process.

π

π

ΚS

+

_

0
γ

γ

Fig. 19. Leading contribution to K0
S → γγ
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14 Chiral Perturbation Theory for Matter Fields

Chiral perturbation theory can also be applied to the interactions of the Gold-
stone bosons with all other particles, which are generically referred to as mat-
ter fields. The matter fields (baryon, heavy mesons, etc.) transform as irre-
ducible representations of SU (3)V , but do not form representations of chiral
SU (3)L × SU (3)R. To discuss the interactions of matter fields, it is more con-
venient to use the ξ-basis of Sect. 11. We will consider the interactions of the
pions with the spin-1/2 baryon octet. The generalization to other matter fields
will be obvious. The CCWZ prescription for matter fields such as the baryon is
that under a SU (3)L × SU (3)R transformation, the transformation law is

B → UBU †, (160)

where U is implicitly defined in terms of L and R in (105), and the octet of
baryon fields is




1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ


 . (161)

Under a SU (3)V transformation, L = R = U , and the baryon transforms as an
SU (3)V adjoint. Any transformation that reduces to the adjoint transformation
law for SU (3)V transformations is acceptable. For example, one can choose

B → LBL†, B → UBR†, etc. (162)

The different choices are all equivalent, and correspond to redefining the baryon
field. For example, if B has the transformation law (160), then ξBξ† and Bξ
transform as B → LBL† and B → UBR† respectively.

The baryon chiral Lagrangian is the most general invariant Lagrangian writ-
ten in terms of B and ξ. In writing the Lagrangian, it is convenient to introduce
the definitions

Aµ = i
2

(
ξ∂µξ† − ξ†∂µξ

)
=
∂µπ

f
+ . . . ,

V µ = 1
2

(
ξ∂µξ† + ξ†∂µξ

)
=

1

2f2
[π, ∂µπ] + . . . ,

(163)

which transform as
Aµ → UAµU †, (164)

and
V µ → UV µU † − ∂µUU †, (165)

under SU (3)L × SU (3)R. The covariant derivative on baryons is defined by

DµB = ∂µB + [V µ, B] , (166)

which transforms as
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DµB → U DµB U †. (167)

The most general baryon Lagrangian to order p is

L = trB
(
i /D −mB

)
B +D trBγµγ5 {Aµ, B}+ F trBγµγ5 [Aµ, B] + Lξ, (168)

where Lξ is the purely meson Lagrangian with Σ = ξ2, mB is the baryon mass, /D
is the covariant derivative (166) and F and D are the usual axial vector coupling
constants, with gA = F +D.

The presence of the dimensionful parameter mB in the Lagrangian ruins the
power counting arguments necessary for a sensible effective field theory. Loop
graphs in baryon chiral perturbation theory will produce corrections of order
mB/Λχ ∼ 1, so the entire chiral expansion breaks down. There is an alternative
formulation of baryon chiral perturbation theory that avoids this problem. The
idea is to expand the Lagrangian about nearly on-shell baryons, so that one has
a Lagrangian that can be expanded in powers of 1/mB, and has no term of order
mB . The method used is similar to that used for heavy quark fields in HQET.
Instead of using the Dirac baryon field B, one uses a velocity-dependent baryon
field Bv, which is related to the original baryon field B by

Bv(x) =
1 + v/

2
B(x) eimBv·x, (169)

where v is the velocity of the baryon. In the baryon rest frame, v = (1, 0, 0, 0),
and

Bv(x) =
1 + γ0

2
B(x) eimBt, (170)

which corresponds to keeping only the particle part of the spinor, and subtract-
ing the baryon mass mB from all energies. In terms of the field Bv, the chiral
Lagrangian is

Lv = trB (iv ·D)B+D trBγµγ5 {Aµ, B}+F trBγµγ5 [Aµ, B]+O
(

1

mB

)
+Lξ.
(171)

The baryon mass term is no longer present, and the baryon Lagrangian now has
an expansion in powers of 1/mB . Note that the baryon chiral Lagrangian starts
at order p, whereas the meson Lagrangian starts at order p2.

A similar procedure can be applied to other matter fields, not just to baryons,
provided one can factor the common mass (such as mB) out of the Feynman
graphs. For baryon chiral perturbation theory, this is possible because baryon
number is conserved, so one can remove a common mass mB from all baryons. A
similar method also works for hadrons containing a heavy quark, such as the B
and B∗ mesons, because b-quark number is conserved by the strong interactions,
and the B and B∗ are degenerate in the heavy quark limit. It cannot be used
for processes such as ρ→ ππ, because the ρ mass mρ turns into the pion energy
in the final state.

The velocity-dependent Lagrangian Lv has no dimensionful coefficients in
the numerator. This implies that the power counting arguments of an effective
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field theory are valid. One has two expansion parameters, 1/mB and 1/Λχ. The
power counting rule (129) is now

D = 1 + 2L+
∑

k

mk (k − 2) +
∑

k

nk (k − 1) , (172)

where mk is the number of vertices from the pk terms in the meson Lagrangian,
and nk is the number of vertices from the pk terms in the baryon Lagrangian.
The proof of this result is similar to (129), and will be omitted. The difference
between the meson and baryon terms arises because the meson propagator is
1/k2, whereas the baryon propagator is 1/k · v.

The naive dimensional analysis estimate (138) is now

f2Λ2
χ

(
π

f

)n(
∂

Λχ

)m(
B

f
√
Λχ

)r
(173)

For example, the kinetic term B (iv ·D)B has a coefficient of order

f2Λ2
χ

(
∂

Λχ

)1
(

B

f
√
Λχ

)2

∼ 1, (174)

and the four-baryon term BB BB has a coefficient of order

f2Λ2
χ

(
B

f
√
Λχ

)4

∼ 1

f2
. (175)

Similar power counting arguments hold for all strongly interacting gauge
theories. For example, in tests for quark and lepton substructure, one uses the
operator

4π

Λ2
ELP

qq qq, (176)

and places limits on ΛELP. A quark field has the same power counting rules as
a baryon field in baryon chiral perturbation theory. Comparing with (175), we
see that

ΛELP = Λ/
√

4π, (177)

where Λ is the scale of the composite interactions defined by analogy with the
chiral scale Λχ: i.e. scattering amplitudes vary on a momentum scale Λ.

πN Scattering

A simple application of the baryon chiral Lagrangian is the computation of
π−N scattering amplitude at threshold, to order p. From (172), the only graphs
which contribute are tree graphs which involve terms from the meson Lagrangian
at order p2, and the baryon Lagrangian at order p. The two diagrams which
contribute are shown in Fig. 20. The pion-nucleon vertex in Fig. 20(a) vanishes
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at threshold, since it is proportional to pp. The two-π nucleon vertex in Fig. 20(b)
is

i

2f2
B [π, ∂µπ] vµB. (178)

The amplitude can be rewritten using π = πaT aB, where T aB are the flavor ma-
trices in the baryon representation. The pions are in the adjoint representation
of flavor, so the flavor matrices acting on pions can be written in terms of the
structure constants

(T cπ)ba = ifabc. (179)

Using the commutation relations
[
T aB , T

b
B

]
= ifabcT

c
B , and evaluating Fig. 20

using the interaction (178) gives the amplitude

A = − i

f2
Mπ Tπ · TB , (180)

where we have used E = Mπ for the energy of the pion. Changing from the
non-relativistic normalization of baryon states to the relativistic normalization
(where the states are normalized to 2E) gives the Weinberg-Tomozawa formula
for the pion-nucleon scattering amplitude

A = − 2i

f2
MBMπ (Tπ · TB) . (181)

Tπ ·TB = 1/2
[
(Tπ + TB)2 − T 2

π − T 2
B

]
= 1/2 [I(I + 1)− 2− 3/4], so that Tπ ·TB

is −1 in the isospin-1/2 channel and 1/2 in the isospin-3/2 channel.

Fig. 20. Contributions to πN scattering at order p

Non-Analytic Terms

The chiral Lagrangian for matter fields can be used to compute loop correc-
tions. The matter field Lagrangian has an expansion in powers of p, whereas the
Goldstone boson Lagrangian had an expansion in powers of p2. Consequently,
loop integrals for matter field interactions can have either even or odd dimen-
sion. The even dimensional integrals have the same structure as for the mesons,
and lead to non-analytic terms of the form (M 2r/16π2f2) logM 2/µ2, where M
is a π, K or η mass, and r is an integer. The µ dependence is cancelled by a
corresponding µ dependence in a higher order term in the Lagrangian. The odd
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dimensional integrals lead to non-analytic terms of the form (M 2r+1/16πf2),
where r is an integer. These odd-dimensional terms do not have a multiplying
logarithm, since the µ dependence cannot be absorbed by a higher dimension
operator in the effective Lagrangian. The operator would have to have the form

M2r+1 which is proportional to m
r+1/2
q , where mq is the quark mass. Such an

operator cannot exist in the Lagrangian, since it contains a square-root of the
quark mass matrix. Also note that the odd-dimensional integrals have one less
power of π in the denominator.

15 Chiral Perturbation Theory for Hadrons Containing

a Heavy Quark

Chiral perturbation theory can also be applied to hadrons containing a heavy
quark. The hadrons are treated as matter fields, and one writes down the most
general possible Lagrangian consistent with the chiral symmetries, as for the
spin-1/2 baryons. In additional, one can constrain some of the terms in the
Lagrangian using heavy quark symmetry. As a simple example, consider the
interaction of the pseudoscalar and vector mesons B and B∗ (or D and D∗) with
pions. These mesons can be treated using the velocity dependent formulation,
since b-quark number is conserved by the strong interactions, and the B and B∗

are degenerate in the heavy quark limit. It is conventional to combine B and B∗

into a single field H defined by

H =
1 + v/

2

[
B∗µγ

µ − Bγ5

]
, (182)

where B and B∗ are column vectors which contain the states bu, bd, and bs. The
transformation law for H under heavy quark spin symmetry transformation SQ
and SU (3)V flavor symmetry transformation U is

H → SQHU
†. (183)

The most general Lagrangian consistent with these symmetries to order p is

L = trH (iv ·D)H + g trHHγµγ5Aµ, (184)

where

DµH = ∂µH −HV µ. (185)

There is only a single coupling constant g which appears to this order, so the
BB∗π and B∗B∗π couplings are related to each other by the heavy quark spin
symmetry. The other possible interaction term,

trHγµγ5HAµ (186)

is forbidden by heavy quark spin symmetry, and is suppressed by one power of
1/mQ. This term splits the BB∗π and B∗B∗π couplings at order 1/mQ.
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The chiral Lagrangian (184) can be used to compute corrections to various
quantities for heavy hadrons. For example, one can show that

fBs
fB

= 1− 5
6

(
1 + 3g2

) M2
K

16π2f2
log

M2
K

µ2
, (187)

and
BBs
BB

= 1− 2
3

(
1− 3g2

) M2
K

16π2f2
log

M2
K

µ2
, (188)

where fB and BB are the decay constant for B decay and the bag constant for

B0−B0
mixing respectively. Further applications can be found in the literature.
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